Migratory O. mykiss Colonizing a Natal Stream After Barrier Removal in the Methow River basin, WA

Dana Weigel, Univ. of Idaho, Dept. Fisheries and Wildlife, Patrick Connolly, USGS, Columbia River Research Lab and Madison Powell, Univ. of Idaho, Aquaculture Research Institute

Willamette Science Review February 2017

Study Area – tributary Methow River, upper Columbia Basin

Long mainstem migration (843 km)

9 mainstem dams

Upper Columbia Steelhead listed endangered 1997 -> threatened

Abundance	<5% extinction risk 100 yrs
Productivity	3,000 spawners
Spatial Structure	Previously occupied habitats
Diversity	Natural patterns genetic, phenotypic diversity

2010 Status Review Not viable

Study Area - Steelhead returns to Wells Dam 1999-2010

80-90% returning adults hatchery-origin

Study Area - 7 Diversion dams redesigned in Beaver Creek 2002-2004

Objectives

- Do migratory steelhead establish a population in the re-opened habitat?
- Which source -> establishes a population?
 - Individual reproductive success
 - mate selection, successful phenotypes to next generation
 - Founder effect? Or low diversity
- What spatial extent of colonization 1 generation after re-open habitat?
 - Migration strategy (tag tracking)
 - Genetic

Three major processes shaping genetic structure ~

Gene Flow ~

Migration Decreases genetic Differences thru mixing

Drift ~

Increases genetic Differences Random fixation alleles Due to finite popn size

System of Mating ~

selection for trait – genetic link

Mutation Selection

Life history diversity

Migration	Iteoparous Overlapping generations	Fre	sh:s	alt
Anadromous	Steelhead	1:1	2:1	3:1
Estuary	Steemeau	1:2	2:2	3:2
Fluvial (River)		1:3	2:3	3:3
Resident (Stream)	Rainbow Trout	1:4	2:4	3:4
Adfluvial (Lake)				

Methods – Capture

- Upstream/downstream picket weir
 - Feb to Dec 2005, 2006, 2007, 2008
 - Adults on spawning migration
 - Parr outmigrating

• Electrofishing at monitoring sites

Juvenile rearing in tributary

Methods - Tagging

- Migration behavior was identified using PIT tag
- 16 digit alpha-numeric code
 - 3D9.1BF1FDC829
- Followed tags of juveniles reared in Beaver Creek to return as adults

Methods - Sample Selection

- Used Spawners from BY 2005 and 2006
- Queried tissue samples for analysis by length to match these brood years collected 2005-2008

Collection/BY age	2005	2006	2007	2008
2005	0			
2006	1	0		
2007	2	1	0	
2008	3	2	1	0

Collected Wells Hatchery tissue from WDFW for reference

Methods - Tissue collection and Genotyping

- Fin clip preserved in 95% EtOH
- DNA extracted
- PCR amplification optimized for each locus
- 16 usat loci analysis conducted at UI Aquaculture Research Station, Hagerman ID
 - 13 usat loci standardized (Stevensen et al. 2009)
 - One102 (Olsen et al 2000), Omm1036 and Omm1046 (Rexroad et al 2002)

Parent – Offspring Matching

Exclusion tests with 1 mismatch using Cervus > match 15 of 16 loci

Relate Successful Reproduction to Mate Selection

• Use Spearman Rank correlation to look at association between mating pairs

Change in Popn Genetics over Generation

• F_{st} and Fisher exact tests

Results – Do steelhead enter the re-opened Habitat? Source?

Results – Do steelhead colonize the re-opened Habitat? Source?

Results – Successful mate selection by source?

Number of Mates

Results –Successful spawners by size/life history

Results - What phenotypes were associated with successful mating?

• Sig. paired by day past weir (early-early, later-later) (p<0.001, p=0.84)

Results – What phenotypes were associated with successful mating?

Difference in Fork Length (mm)

Sig. disassociation in size (larger-smaller) (p=0.005, p=-0.72)

High genetic exchange among life history and generations

Random mating => no founder effect

Results - Do steelhead colonize the reopened habitat?

Survival 1.3%

BUT, 50% parr progeny were AxA cross

Results - Returning Offspring as Adults

Results – Successful phenotypes? Juvenile migration

80% offspring captured Age 0

Most parr reared >200 days downstream from the natal tributary before smolt outmigration

Results – Successful phenotypes? Juvenile Migration/Survival

Most successful adult returns rear in –basin > 300 days

Days between BC outmigration and smolt detection

Results – Spatial extent of measurable changes?

Site	Before Year	After Year	F _{ST}	Pval
DS Dam	2005	2009	0.014*	0.001*
UBR1	2004	2008	0.021*	< 0.001*
UBR1	2004	2009	0.027*	< 0.001*
CMP	2005	2009	0.002	0.047
UBR4	2004	2008	0.011*	0.009*
UBR4	2004	2009	-0.002	0.558
SFB	2005	2008	0.004	0.121
SFB	2005	2009	0.002	0.276

* Indicates statistical significance

Results – Temporal Tests (sampling effect)

site	year	year	F _{ST}	Pval	
UBR1	2008	2009	-0.003	0.253	CMP SEB
UBR2	2008	2009	-0.004	0.880	UBR2
UBR4	2008	2009	<-0.001	0.147	
SFB	2008	2009	0.005	0.568	UBR1

% smolt UBR1

Conclusions - Colonization

Before barrier removal

- Fragmented
- Smolts out, but no adult returns

After barrier removal

- Genetic shifts lowest site km
 5
- Tag movement to middle site km 12
- Smolts out and adult returns

Conclusions – Indiv Success

- Fluvial RBT were key to re-colonization, gene flow and reserve of wild genotype
- Hatchery unsuccessful in early years of colonization
- Phenotypes of successful spawners shifted dramatically between 2005 and 2006
- Successful juvenile SH reared in the Methow R (or Wells Res) for 1 to 2 years prior to smolt outmigration
- No clear relationship between number of offspring and returning adults

What is the weakest link in steelhead conservation?

- Phenotypes/genotypes under selection for adult survival and how these interact in time, space, density -> selection gradients
 - Interactions between rearing habitats and selection gradients influences fitness
- Aggressive work to understand, control or eliminate hatchery steelhead effects

Acknowledgements

Funding provided by the Bureau of Reclamation

Data collection assistance (USGS) – Kyle Martens, Wes Tibits, Brian Fisher

Lab analysis assistance Joyce Faler (Univ. of Idaho)

Coordination Greg Knott, Michael Newsom

Results - % Hatchery

Genetic Differentiation (Fst)

	Fluvial	Wild Anad
Wild Anad	0.002 - ns	
Hatchery	0.006	0.004